Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
An Acad Bras Cienc ; 95(suppl 3): e20210528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37820118

RESUMO

The impact of the Antarctic Ozone Hole Influence over Southern Brazil in October 2015 was analyzed using daily mean data of the Total Column Ozone (TCO), Ultraviolet Index (UVI) and Radiative Cloud Fraction (RCF) from the Ozone Monitoring Instrument satellite instrument. Vertical profiles and fields of ozone content and Potential Vorticity available from the European Centre for Medium-Range Weather Forecast reanalysis, air masses backward trajectories from the HYbrid Single-Particle Lagrangian Integrated Trajectory model and channel 3 water vapor images from the Geostationary Operational Environmental Satellite GOES-13 were also analyzed. The five identified events showed an -7.4±2.3% average TCO reduction, leading to an +16.6±54.6% UVI increase even with a predominance of partly cloudy days. Other impacts were observed in the ozone profiles, where the most significant anomalies occurred from 650 K reaching 1.2 ppmv at the 850 K level. In the ozone fields at 700 K, the presence of a polar origin tongue was observed causing negatives anomalies between -0.2 and 0.4 ppmv in a transient system format forced with eastward-traveling Rossby waves passing through the Southern of Brazil and Uruguay.


Assuntos
Perda de Ozônio , Ozônio , Brasil , Tempo (Meteorologia) , Regiões Antárticas
2.
Photochem Photobiol Sci ; 22(5): 1093-1127, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37129840

RESUMO

Variations in stratospheric ozone and changes in the aquatic environment by climate change and human activity are modifying the exposure of aquatic ecosystems to UV radiation. These shifts in exposure have consequences for the distributions of species, biogeochemical cycles, and services provided by aquatic ecosystems. This Quadrennial Assessment presents the latest knowledge on the multi-faceted interactions between the effects of UV irradiation and climate change, and other anthropogenic activities, and how these conditions are changing aquatic ecosystems. Climate change results in variations in the depth of mixing, the thickness of ice cover, the duration of ice-free conditions and inputs of dissolved organic matter, all of which can either increase or decrease exposure to UV radiation. Anthropogenic activities release oil, UV filters in sunscreens, and microplastics into the aquatic environment that are then modified by UV radiation, frequently amplifying adverse effects on aquatic organisms and their environments. The impacts of these changes in combination with factors such as warming and ocean acidification are considered for aquatic micro-organisms, macroalgae, plants, and animals (floating, swimming, and attached). Minimising the disruptive consequences of these effects on critical services provided by the world's rivers, lakes and oceans (freshwater supply, recreation, transport, and food security) will not only require continued adherence to the Montreal Protocol but also a wider inclusion of solar UV radiation and its effects in studies and/or models of aquatic ecosystems under conditions of the future global climate.


Assuntos
Perda de Ozônio , Ozônio , Animais , Humanos , Ozônio Estratosférico , Raios Ultravioleta , Mudança Climática , Ecossistema , Concentração de Íons de Hidrogênio , Plásticos , Água do Mar
4.
Nature ; 615(7951): 259-264, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890371

RESUMO

Remarkable perturbations in the stratospheric abundances of chlorine species and ozone were observed over Southern Hemisphere mid-latitudes following the 2020 Australian wildfires1,2. These changes in atmospheric chemical composition suggest that wildfire aerosols affect stratospheric chlorine and ozone depletion chemistry. Here we propose that wildfire aerosol containing a mixture of oxidized organics and sulfate3-7 increases hydrochloric acid solubility8-11 and associated heterogeneous reaction rates, activating reactive chlorine species and enhancing ozone loss rates at relatively warm stratospheric temperatures. We test our hypothesis by comparing atmospheric observations to model simulations that include the proposed mechanism. Modelled changes in 2020 hydrochloric acid, chlorine nitrate and hypochlorous acid abundances are in good agreement with observations1,2. Our results indicate that wildfire aerosol chemistry, although not accounting for the record duration of the 2020 Antarctic ozone hole, does yield an increase in its area and a 3-5% depletion of southern mid-latitude total column ozone. These findings increase concern2,12,13 that more frequent and intense wildfires could delay ozone recovery in a warming world.


Assuntos
Aerossóis , Cloro , Perda de Ozônio , Ozônio , Incêndios Florestais , Aerossóis/efeitos adversos , Aerossóis/análise , Aerossóis/química , Austrália , Cloro/análise , Cloro/química , Ácido Clorídrico/química , Ozônio/análise , Ozônio/química , Aquecimento Global
6.
Br J Hist Sci ; 56(2): 247-267, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36776108

RESUMO

On 16 September 1987, the main chlorofluorocarbon-producing and -consuming countries signed the Montreal Protocol, despite the absence of a scientific consensus on the mechanisms of ozone depletion over Antarctica. We argue in this article that the rapid diffusion from late 1985 onwards of satellite images showing the Antarctic ozone hole played a significant role in this diplomatic outcome. Whereas negotiators claimed that they chose to deliberately ignore the Antarctic ozone hole during the negotiations since no theory was able yet to explain it, the images still loomed large for many of the actors involved. In Western countries, the National Aeronautics and Space Administration's (NASA) satellite visualizations were diffused through the general press and television stations. Other popular and mass media outlets followed quickly. In describing the circulation and appropriation processes of these images within and beyond the scientific and negotiation arenas, we show that the ozone hole images did play an important part in ozone diplomacy in the two years leading up to the signing of the Montreal Protocol, both in the expert and diplomatic arenas and as public diplomacy tools. We conclude by encouraging scholars to engage with new visual archives and to contribute to the development of the vibrant new field of research on visual diplomacy.


Assuntos
Diplomacia , Perda de Ozônio , Ozônio , Estados Unidos , Negociação , United States National Aeronautics and Space Administration , Ozônio/análise
7.
Environ Sci Technol ; 57(5): 1870-1881, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36695819

RESUMO

We report aircraft observations of extreme levels of HCl and the dihalogens Cl2, Br2, and BrCl in an industrial plume near the Great Salt Lake, Utah. Complete depletion of O3 was observed concurrently with halogen enhancements as a direct result of photochemically produced halogen radicals. Observed fluxes for Cl2, HCl, and NOx agreed with facility-reported emissions inventories. Bromine emissions are not required to be reported in the inventory, but are estimated as 173 Mg year-1 Br2 and 949 Mg year-1 BrCl, representing a major uncounted oxidant source. A zero-dimensional photochemical box model reproduced the observed O3 depletions and demonstrated that bromine radical cycling was principally responsible for the rapid O3 depletion. Inclusion of observed halogen emissions in both the box model and a 3D chemical model showed significant increases in oxidants and particulate matter (PM2.5) in the populated regions of the Great Salt Lake Basin, where winter PM2.5 is among the most severe air quality issues in the U.S. The model shows regional PM2.5 increases of 10%-25% attributable to this single industrial halogen source, demonstrating the impact of underreported industrial bromine emissions on oxidation sources and air quality within a major urban area of the western U.S.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Perda de Ozônio , Ozônio , Poluentes Atmosféricos/análise , Halogênios , Ozônio/análise , Bromo , Lagos , Poluição do Ar/análise , Material Particulado/análise , Oxidantes
8.
Sci Bull (Beijing) ; 67(11): 1182-1190, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36545984

RESUMO

The Arctic has experienced several extreme springtime stratospheric ozone depletion events over the past four decades, particularly in 1997, 2011 and 2020. However, the impact of this stratospheric ozone depletion on the climate system remains poorly understood. Here we show that the stratospheric ozone depletion causes significant reductions in the sea ice concentration (SIC) and the sea ice thickness (SIT) over the Kara Sea, Laptev Sea and East Siberian Sea from spring to summer. This is partially caused by enhanced ice transport from Barents-Kara Sea and East Siberian Sea to the Fram Strait, which is induced by a strengthened and longer lived polar vortex associated with stratospheric ozone depletion. Additionally, cloud longwave radiation and surface albedo feedbacks enhance the melting of Arctic sea ice, particularly along the coast of the Eurasian continent. This study highlights the need for realistic representation of stratosphere-troposphere interactions in order to accurately predict Arctic sea ice loss.


Assuntos
Perda de Ozônio , Ozônio Estratosférico , Camada de Gelo , Regiões Árticas , Estações do Ano
9.
Science ; 378(6622): 829-830, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36423291

RESUMO

Various mechanisms initiated by wildfires thinned the stratospheric ozone layer.


Assuntos
Perda de Ozônio , Ozônio Estratosférico , Incêndios Florestais , Austrália , Ozônio Estratosférico/análise , Perda de Ozônio/prevenção & controle
10.
Sci Rep ; 12(1): 12665, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008428

RESUMO

Global mean lower stratosphere temperatures rose abruptly in January 2020 reaching values not experienced since the early 1990s. Anomalously high lower stratospheric temperatures were recorded for 4 months at highly statistically significant levels. Here, we use a combination of satellite and surface-based remote sensing observations to derive a time-series of stratospheric biomass burning aerosol optical depths originating from intense SouthEastern Australian wildfires and use these aerosol optical depths in a state-of-the-art climate model. We show that the S.E. Australian wildfires are the cause of this lower stratospheric warming. We also investigate the radiatively-driven dynamical response to the observed stratospheric ozone perturbation and find a significant strengthening of the springtime Antarctic polar vortex suggesting that biomass burning aerosols play a significant role in the observed anomalous longevity of the ozone hole in 2020.


Assuntos
Perda de Ozônio , Ozônio , Incêndios Florestais , Aerossóis , Regiões Antárticas , Atmosfera/análise , Austrália , Ozônio/análise
11.
Proc Natl Acad Sci U S A ; 119(35): e2207889119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994640

RESUMO

Since about 1980, the tropical Pacific has been anomalously cold, while the broader tropics have warmed. This has caused anomalous weather in midlatitudes as well as a reduction in the apparent sensitivity of the climate associated with enhanced low-cloud abundance over the cooler waters of the eastern tropical Pacific. Recent modeling work has shown that cooler temperatures over the Southern Ocean around Antarctica can lead to cooler temperatures over the eastern tropical Pacific. Here we suggest that surface wind anomalies associated with the Antarctic ozone hole can cause cooler temperatures over the Southern Ocean that extend into the tropics. We use the short-term variability of the Southern Annular Mode of zonal wind variability to show an association between surface zonal wind variations over the Southern Ocean, cooling over the Southern Ocean, and cooling in the eastern tropical Pacific. This suggests that the cooling of the eastern tropical Pacific may be associated with the onset of the Antarctic ozone hole.


Assuntos
Mudança Climática , Clima , Perda de Ozônio , Regiões Antárticas , Temperatura Baixa , Ozônio/análise , Oceano Pacífico , Temperatura , Tempo (Meteorologia) , Vento
12.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131938

RESUMO

The catalytic depletion of Antarctic stratospheric ozone is linked to anthropogenic emissions of chlorine and bromine. Despite its larger ozone-depleting efficiency, the contribution of ocean-emitted iodine to ozone hole chemistry has not been evaluated, due to the negligible iodine levels previously reported to reach the stratosphere. Based on the recently observed range (0.77 ± 0.1 parts per trillion by volume [pptv]) of stratospheric iodine injection, we use the Whole Atmosphere Community Climate Model to assess the role of iodine in the formation and recent past evolution of the Antarctic ozone hole. Our 1980-2015 simulations indicate that iodine can significantly impact the lower part of the Antarctic ozone hole, contributing, on average, 10% of the lower stratospheric ozone loss during spring (up to 4.2% of the total stratospheric column). We find that the inclusion of iodine advances the beginning and delays the closure stages of the ozone hole by 3 d to 5 d, increasing its area and mass deficit by 11% and 20%, respectively. Despite being present in much smaller amounts, and due to faster gas-phase photochemical reactivation, iodine can dominate (∼73%) the halogen-mediated lower stratospheric ozone loss during summer and early fall, when the heterogeneous reactivation of inorganic chlorine and bromine reservoirs is reduced. The stratospheric ozone destruction caused by 0.77 pptv of iodine over Antarctica is equivalent to that of 3.1 (4.6) pptv of biogenic very short-lived bromocarbons during spring (rest of sunlit period). The relative contribution of iodine to future stratospheric ozone loss is likely to increase as anthropogenic chlorine and bromine emissions decline following the Montreal Protocol.


Assuntos
Atmosfera/análise , Iodo/química , Perda de Ozônio , Ozônio Estratosférico/química , Poluentes Atmosféricos/química , Regiões Antárticas , Estações do Ano
13.
Environ Monit Assess ; 194(3): 153, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35132516

RESUMO

The cement industry is intensive in energy and feedstock use. It includes three main phases: raw materials and energy supply, transport, and manufacturing. The sector is known for its considerable environmental impacts. The increase in energy efficiency and the use of non-fossil fuels and raw materials are considered mature technologies in cement industries. We evaluate different environmental impacts of the production of 1 t of cement in four Brazilian scenarios. We compare one business-as-usual reference scenario (case 1) to three alternative 2030 carbon mitigation sectoral plan scenarios (cases 2, 3a, and 3b) that assume mature technologies. We analyze all 18 impact categories within the ReCiPe 2016 Life Cycle Assessment methodology. Results show reductions in 17 impact categories, ranging from no change in ozone depletion (case 2) to 39% reduction in fossil resource scarcity (case 3b). The effects on climate change decreased 14% in case 2 and 33% in cases 3a and 3b. The clinkerization process is the greatest contributor to atmospheric impacts, while raw material consumption to toxicity impacts. In contrast, there is no single main process contributing to resource depletion impacts. The changes in cement production lead to carbon emission reductions above expected levels and to reductions in other environmental impact categories modeled in ReCiPe 2016 method.


Assuntos
Indústria da Construção , Monitoramento Ambiental , Perda de Ozônio , Animais , Brasil , Mudança Climática , Meio Ambiente
14.
Sci Total Environ ; 823: 153670, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131250

RESUMO

The world has entered into the "fourth-generation" of refrigerants, and it is an undeniable fact that we will continue to encounter several issues in identifying a suitable refrigerant that suits the purpose and poses no harm to the environment. The ever-changing regulations on the use of refrigerants have often posed great challenges to the refrigeration industry and there is a pressing need to develop new refrigerants and develop better equipment to use them. Theoretically, an ideal refrigerant should possess characteristics such as low-global warming potential (GWP), non-toxic, non-flammable, and zero-ozone depletion potential (ODP). In addition, the refrigerants are also expected to have excellent thermodynamic and thermophysical properties. Many new synthetic refrigerants have been reported as alternative refrigerants and have very low atmospheric life as well as low GWP and zero-ODP. However, it is irrefutable that most of the studies that reported the so-called new refrigerants are actually not new. From the invention of R-12 (Dichlorodifluoromethane) in 1930s to the invention of R-1234yf in 2000s, these substances are available for decades even before being recognized as refrigerants. This review attempts to provide chronicles on different aspects of refrigerants such as their progress since their invention in the early 1800s, classification and properties. In addition, concepts such as issues associated with the long-term use of refrigerants, barriers for the inclusion of low-GWP refrigerants, various protocols and accords that have occurred since the inception of refrigerants are also critically discussed.


Assuntos
Aquecimento Global , Perda de Ozônio
15.
Photochem Photobiol Sci ; 21(3): 373-384, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35195892

RESUMO

The status of the stratospheric ozone layer is assessed by a panel of experts every 4 years. Reports prepared by this panel include a section with common questions and answers (Q&A) about ozone depletion and related matters. Since 2002, this Q&A supplement has featured a plot comparing historical and current ultraviolet (UV) Index data from Palmer Station, Antarctica (64° S), with measurements at San Diego, California (32° N), and Barrow, Alaska (79° N). The assumptions in generating these plots are discussed and an updated version is presented. The revised plot uses additional data up to the year 2020 and the methods used to create it are better defined and substantiated compared to those used for the legacy plot. Differences between the old and new UV Index values are small (typically < 5%). Both versions illustrate that the ozone hole has led to a large increase in the UV Index at Palmer Station. Between mid-September and mid-November, the maximum UV Index at this site has more than doubled compared to the pre-ozone-hole era (i.e., prior to 1980). When Palmer Station was below the ozone hole in December 1998, an "extreme" UV Index of 14 was observed, exceeding the highest UV Index of 12 ever measured at San Diego despite the city's subtropical latitude. Increases in the UV Index at Barrow and San Diego remain below 40% and 3%, respectively.


Assuntos
Perda de Ozônio , Ozônio , Regiões Antárticas , California , Ozônio/análise , Raios Ultravioleta
16.
Photochem Photobiol Sci ; 21(3): 275-301, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35191005

RESUMO

The Environmental Effects Assessment Panel of the Montreal Protocol under the United Nations Environment Programme evaluates effects on the environment and human health that arise from changes in the stratospheric ozone layer and concomitant variations in ultraviolet (UV) radiation at the Earth's surface. The current update is based on scientific advances that have accumulated since our last assessment (Photochem and Photobiol Sci 20(1):1-67, 2021). We also discuss how climate change affects stratospheric ozone depletion and ultraviolet radiation, and how stratospheric ozone depletion affects climate change. The resulting interlinking effects of stratospheric ozone depletion, UV radiation, and climate change are assessed in terms of air quality, carbon sinks, ecosystems, human health, and natural and synthetic materials. We further highlight potential impacts on the biosphere from extreme climate events that are occurring with increasing frequency as a consequence of climate change. These and other interactive effects are examined with respect to the benefits that the Montreal Protocol and its Amendments are providing to life on Earth by controlling the production of various substances that contribute to both stratospheric ozone depletion and climate change.


Assuntos
Perda de Ozônio , Ozônio , Mudança Climática , Ecossistema , Humanos , Ozônio/química , Ozônio Estratosférico , Raios Ultravioleta
17.
Chemosphere ; 291(Pt 1): 132816, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34752833

RESUMO

Polar stratospheric clouds (PSCs), of which the surface is a dynamic liquid water layer and might consist of aqueous HNO3 and H2O2, is a well-known key meteorological condition contributing to the ozone hole in the polar stratosphere. PSCs has been considered to provide abundant surface for the heterogeneous reactions causing the formation of the Cl2 and HOCl, which are further photolyzed into Cl and ClO radicals leading to the ozone destruction. Here we demonstrated that the sunlight drives the massive and stable production of OH radicals in aqueous HNO3 and its main photo-induced byproduct HNO2. We also found that the photo-generated OH radicals in aqueous HNO3, HNO2 and H2O2 have the remarkable capability to react with the dissolved HCl, Cl- and Br- to form halogen radicals. In addition, we observed that the H2O2 can react with dissolved HCl and Br- in darkness to form and release Cl2 and Br2 gases, which could further be photolyzed into reactive halogen radicals whenever sunlight is available. All these findings suggest that, except for the well-known heterogeneous reactions, photochemical reactions involving the aqueous HNO3 and H2O2 on and within PSCs surface might constitute another important halogen activation pathway for ozone destruction. This study may shed deeper insights into the mechanism of halogen radicals resulting in ozone depletion in polar stratosphere.


Assuntos
Perda de Ozônio , Ozônio , Halogênios , Peróxido de Hidrogênio , Radical Hidroxila
18.
Nature ; 596(7872): 384-388, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34408332

RESUMO

The control of the production of ozone-depleting substances through the Montreal Protocol means that the stratospheric ozone layer is recovering1 and that consequent increases in harmful surface ultraviolet radiation are being avoided2,3. The Montreal Protocol has co-benefits for climate change mitigation, because ozone-depleting substances are potent greenhouse gases4-7. The avoided ultraviolet radiation and climate change also have co-benefits for plants and their capacity to store carbon through photosynthesis8, but this has not previously been investigated. Here, using a modelling framework that couples ozone depletion, climate change, damage to plants by ultraviolet radiation and the carbon cycle, we explore the benefits of avoided increases in ultraviolet radiation and changes in climate on the terrestrial biosphere and its capacity as a carbon sink. Considering a range of strengths for the effect of ultraviolet radiation on plant growth8-12, we estimate that there could have been 325-690 billion tonnes less carbon held in plants and soils by the end of this century (2080-2099) without the Montreal Protocol (as compared to climate projections with controls on ozone-depleting substances). This change could have resulted in an additional 115-235 parts per million of atmospheric carbon dioxide, which might have led to additional warming of global-mean surface temperature by 0.50-1.0 degrees. Our findings suggest that the Montreal Protocol may also be helping to mitigate climate change through avoided decreases in the land carbon sink.


Assuntos
Sequestro de Carbono , Perda de Ozônio/prevenção & controle , Ozônio Estratosférico/análise , Dióxido de Carbono/análise , Sequestro de Carbono/efeitos da radiação , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , História do Século XXI , Fotossíntese/efeitos da radiação , Plantas/metabolismo , Plantas/efeitos da radiação , Temperatura , Raios Ultravioleta
19.
Glob Chang Biol ; 27(22): 5681-5683, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34392574

RESUMO

The Montreal Protocol and its Amendments have been highly effective in protecting the stratospheric ozone layer, preventing global increases in solar ultraviolet-B radiation (UV-B; 280-315 nm) at Earth's surface, and reducing global warming. While ongoing and projected changes in UV-B radiation and climate still pose a threat to human health, food security, air and water quality, terrestrial and aquatic ecosystems, and construction materials and fabrics, the Montreal Protocol continues to play a critical role in protecting Earth's inhabitants and ecosystems by addressing many of the United Nations Sustainable Development Goals.


Assuntos
Perda de Ozônio , Ozônio , Mudança Climática , Ecossistema , Humanos , Ozônio Estratosférico , Raios Ultravioleta/efeitos adversos
20.
PLoS One ; 16(5): e0251928, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34015005

RESUMO

A comprehensive life cycle assessment (LCA) was conducted for the matchsticks industry in the Khyber Pakhtunkhwa province of Pakistan to quantify environmental footprint, water footprint, cumulative energy use, and to identify improvement opportunities in the matchsticks manufacturing process. One carton of matchsticks was used as reference unit for this study. Foreground data was collected from the matchsticks industry through questionnaire surveys, personal meetings, and field measurements. The collected data was transformed into potential environmental impacts through the Centre for Environment Studies (CML) 2000 v.2.05 method present by default in the SimaPro v.9.1 software. Water footprint was calculated using methodology developed by Hoekstra et al., 2012 (water scarcity index) V1.02 and cumulative energy demand by SimaPro v.9.1 software. The results showed that transport of primary material (wood logs), sawn wood for matchsticks, red phosphorous, acrylic varnish, and kerosene fuel oil contributed to the overall environmental impacts. Transport of primary materials and sawn timber for matchsticks contributed significantly to abiotic depletion, global warming, eutrophication potential, ozone depletion, corrosion, human toxicity, and aquatic ecotoxicity effects. The total water footprint for manufacturing one carton of matchsticks was 0.265332 m3, whereas the total cumulative energy demand was 715.860 Mega Joules (MJ), mainly sourced from non-renewable fossil fuels (708.979 MJ). Scenario analysis was also conducted for 20% and 30% reduction in the primary material distance covered by trucks and revealed that reducing direct material transport distances could diminish environmental impacts and energy consumption. Therefore, environmental footprint could be minimized through diverting matchsticks industries freight from indigenous routes to high mobility highways and by promoting industrial forestry close to industrial zones in Pakistan. Many industries did not have emissions control systems, exceeding the permissible limit for emissions established by the National Environmental Quality Standards (NEQS) of Pakistan. Thus, installation of emissions control system could also diminish emissions from match industry in Pakistan.


Assuntos
Meio Ambiente , Combustíveis Fósseis , Indústrias/normas , Água/química , Eutrofização , Aquecimento Global , Humanos , Perda de Ozônio , Paquistão , Madeira/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...